Кто такой гаусс
- Брауншвейг, Священная Римская империя[4][2][5]
- Гёттинген, Королевство Ганновер, Германский союз[4][2][6][…]
- Рейнский союз
- Германский союз
- Королевство Ганновер[7][8]
- Гёттингенский университет
Медаль Копли (1838) Подпись Произведения в Викитеке Медиафайлы на Викискладе
Иога́нн Карл Фри́дрих Га́усс (нем. Johann Carl Friedrich Gauß; 30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген) — немецкий математик, механик, физик, астроном и геодезист[11]. Считается одним из величайших математиков всех времён, «королём математиков»[12].
Лауреат медали Копли (1838), член Лондонского королевского общества (1804)[13], иностранный член Парижской (1820)[14] и Шведской (1821) академий наук, иностранный член-корреспондент (1802) и иностранный почётный член (1824) Петербургской академии наук[15].
Биография
1777—1798 годы
Дом, где родился Гаусс (не сохранился)Родился в немецком герцогстве Брауншвейг. Дед Гаусса был бедным крестьянином; отец, Гебхард Дитрих Гаусс, — садовником, каменщиком, смотрителем каналов; мать, Доротея Бенц, — дочерью каменщика. Будучи неграмотной, мать не записала дату рождения сына, запомнив только, что он родился в среду, за восемь дней до праздника Вознесения, который отмечается спустя 40 дней после Пасхи. В 1799 г. Гаусс вычислил точную дату своего рождения, разработав метод определения даты Пасхи на любой год[16].
Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял арифметические ошибки отца. Известна история, в которой юный Гаусс выполнил некое арифметическое вычисление гораздо быстрее всех одноклассников; обычно при изложении этого эпизода упоминается вычисление суммы чисел от 1 до 100, но первоисточник этого неизвестен[17]. До самой старости он привык большую часть вычислений производить в уме.
С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу окончить колледж Collegium Carolinum в Брауншвейге (1792—1795).
Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую и французскую литературу, которые читал в подлиннике. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.
В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в теории чисел, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».
С 1795 по 1798 год Гаусс учился в Гёттингенском университете, где его учителем был А. Г. Кестнер[18]. Это — наиболее плодотворный период в жизни Гаусса.
1796 год: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки:
- если n — простое число, то оно должно быть видаn22k1displaystyle n=2^{2^{k}} 1} (числом Ферма);
- если n — составное число, то его каноническое разложение должно иметь видn2kp1pmdisplaystyle n=2^{k}p_{1}\dots p_{m}} , гдеpidisplaystyle p_{i}} — различные простые числа Ферма.
Этим открытием Гаусс очень дорожил и завещал изобразить на своей могиле правильный семнадцатиугольник, вписанный в круг.
С 1796 года Гаусс ведёт краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах Абеля, Якоби, Коши, Лобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).
Все многочисленные опубликованные труды Гаусса содержат значительные результаты, сырых и проходных работ не было ни одной.
1798 год: закончен шедевр «Арифметические исследования» (лат. Disquisitiones Arithmeticae), напечатан только в 1801 году.
В этом труде подробно излагается теория сравнений в современных (введённых им) обозначениях, решаются сравнения произвольного порядка, глубоко исследуются квадратичные формы, комплексные корни из единицы используются для построения правильных n-угольников, изложены свойства квадратичных вычетов, приведено доказательство квадратичного закона взаимности и т. д. Гаусс любил говорить, что математика — царица наук, а теория чисел — царица математики.
1798—1816 годы
Памятник Гауссу работы Фрица Шапера в Брауншвейге с изображённой на нём 17-лучевой звездойВ 1798 году Гаусс вернулся в Брауншвейг и жил там до 1807 года.
Герцог продолжал опекать молодого гения. Он оплатил печать его докторской диссертации (1799) и пожаловал неплохую стипендию. В своей докторской Гаусс впервые доказал основную теорему алгебры. До Гаусса было много попыток это сделать, наиболее близко к цели подошёл Д'Аламбер. Гаусс неоднократно возвращался к этой теореме и дал 4 различных её доказательства.
С 1799 года Гаусс — приват-доцент Брауншвейгского университета.
1801 год: избирается членом-корреспондентом Петербургской Академии наук.
После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки, в первую очередь астрономию. Поводом послужило открытие малой планеты Церера (1801), потерянной вскоре после обнаружения. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления, пользуясь разработанным им же новым вычислительным методом[11], и с большой точностью указал место, где искать «беглянку»; там она, к общему восторгу, и была вскоре обнаружена.
Слава Гаусса становится общеевропейской. Многие научные общества Европы избирают Гаусса своим членом, герцог увеличивает пособие, а интерес Гаусса к астрономии ещё более возрастает.
1805 год: Гаусс женился на Иоганне Остгоф. У них было трое детей, выжили двое — сын Йозеф и дочь Минна.
1806 год: от раны, полученной на войне с Наполеоном, умирает его великодушный покровитель-герцог. Несколько стран наперебой приглашают Гаусса на службу (в том числе в Петербург). По рекомендации Александра фон Гумбольдта Гаусса назначают профессором в Гёттингене и директором Гёттингенской обсерватории. Эту должность он занимал до самой смерти.
1807 год: наполеоновские войска занимают Гёттинген. Все граждане облагаются контрибуцией, в том числе огромную сумму — 2000 франков — требуется заплатить Гауссу. Ольберс и Лаплас тут же приходят ему на помощь, но Гаусс отклоняет их деньги; тогда неизвестный из Франкфурта присылает ему 1000 гульденов, и этот дар приходится принять. Только много позднее узнали, что неизвестным был курфюрст Майнцский, друг Гёте (по другим данным — епископ Франкфурта).
1809 год: новый шедевр, «Теория движения небесных тел». Изложена каноническая теория учёта возмущений орбит.
Как раз в четвёртую годовщину свадьбы умерла Иоганна, вскоре после рождения третьего ребёнка. Этот год был самым тяжёлым для Гаусса. В следующем, 1810 году он женился вновь — на Вильгельмине («Минне») Вальдек, подруге Иоганны. Число детей Гаусса вскоре увеличилось до пяти.
1810 год: новые почести. Гаусс получает премию Парижской академии наук и золотую медаль Лондонского королевского общества.
1811 год: появилась новая комета. Гаусс быстро и очень точно рассчитал её орбиту. Начал работу над комплексным анализом, открывает (но не публикует) теорему, позже переоткрытую Коши и Вейерштрассом: интеграл от аналитической функции по замкнутому контуру равен нулю.
1812 год: исследование гипергеометрического ряда, обобщающего разложение практически всех известных тогда функций.
Знаменитую комету «пожара Москвы» (1812) всюду наблюдают, пользуясь вычислениями Гаусса.
1815 год: публикует первое строгое доказательство основной теоремы алгебры.
1816—1855 годы
1820 год: Гауссу поручают произвести геодезическую съёмку Ганновера. Для этого он разработал соответствующие вычислительные методы (в том числе методику практического применения своего метода наименьших квадратов), приведшие к созданию нового научного направления — высшей геодезии, и организовал съёмку местности и составление карт[11].
1821 год: в связи с работами по геодезии Гаусс начинает исторический цикл работ по теории поверхностей. В науку входит понятие «гауссовой кривизны». Положено начало дифференциальной геометрии. Именно результаты Гаусса вдохновили Римана на написание его классической диссертации о «римановой геометрии».
Итогом изысканий Гаусса была работа «Исследования относительно кривых поверхностей» (1822). В ней свободно использовались общие криволинейные координаты на поверхности. Гаусс далеко развил метод конформного отображения, которое в картографии сохраняет углы (но искажает расстояния); оно применяется также в аэро-, гидродинамике и электростатике.
1824 год: избирается иностранным почётным членом Петербургской Академии наук.
Гаусс в 1828 г.1825 год: открывает гауссовы комплексные целые числа, строит для них теорию делимости и сравнений. Успешно применяет их для решения сравнений высоких степеней.
1829 год: в замечательной работе «Об одном новом общем законе механики», состоящей всего из четырёх страниц, Гаусс обосновывает[19] новый вариационный принцип механики — принцип наименьшего принуждения. Принцип применим к механическим системам с идеальными связями и сформулирован Гауссом так: «движение системы материальных точек, связанных между собой произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершённом, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, то есть происходит с наименьшим возможным принуждением, если в качестве меры принуждения, применённого в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины её отклонения от того положения, которое она заняла бы, если бы была свободной»[20].
Гаусс и Вебер. Скульптура в Гёттингене.1831 год: умерла вторая жена, у Гаусса началась тяжелейшая бессонница. В Гёттинген приехал приглашённый по инициативе Гаусса 27-летний талантливый физик Вильгельм Вебер, с которым Гаусс познакомился в 1828 году в гостях у Гумбольдта. Оба энтузиаста науки сдружились, несмотря на разницу в возрасте, и начинают цикл исследований электромагнетизма.
1832 год: «Теория биквадратичных вычетов». С помощью тех же целых комплексных гауссовых чисел доказываются важные арифметические теоремы не только для комплексных, но и для вещественных чисел. Здесь же Гаусс приводит геометрическую интерпретацию комплексных чисел, которая с этого момента становится общепринятой.
1833 год: Гаусс изобретает электрический телеграф и (вместе с Вебером) строит его действующую модель.
1837 год: Вебера увольняют за отказ принести присягу новому королю Ганновера. Гаусс вновь остаётся в одиночестве.
1839 год: 62-летний Гаусс овладевает русским языком и в письмах в Петербургскую Академию просит прислать ему русские журналы и книги, в частности «Капитанскую дочку» Пушкина. Предполагают, что это связано с интересом Гаусса к работам Лобачевского, который в 1842 году по рекомендации Гаусса был избран иностранным членом-корреспондентом Гёттингенского королевского общества.
В том же 1839 году Гаусс в сочинении «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния» изложил основы теории потенциала, включая ряд основополагающих положений и теорем — например, основную теорему электростатики (теорема Гаусса)[21].
1840 год: в работе «Диоптрические исследования» Гаусс разработал теорию построения изображений в сложных оптических системах[21].
Умер Гаусс 23 февраля 1855 года в Гёттингене. Король Ганновера Георг V приказал отчеканить в честь Гаусса медаль, на которой были выгравированы портрет Гаусса и почётный титул «Mathematicorum Princeps» — «король математиков».
Научная деятельность
С именем Гаусса связаны фундаментальные исследования почти во всех основных областях математики: в алгебре, теории чисел, дифференциальной и неевклидовой геометрии, математическом анализе, теории функций комплексного переменного, теории вероятностей, а также в аналитической и небесной механике, астрономии, физике и геодезии[11]. «В каждой области глубина проникновения в материал, смелость мысли и значительность результата были поражающими. Гаусса называли „королём математиков“»[22] (лат. Princeps mathematicorum).
Гаусс чрезвычайно строго относился к своим печатным трудам и никогда не публиковал даже выдающиеся результаты, если считал свою работу над этой темой незавершённой. На его личной печати было изображено дерево с несколькими плодами, под девизом: «Pauca sed matura» (немного, но зрело)[23]. Изучение архива Гаусса показало, что он медлил с публикацией ряда своих открытий, и в результате его опередили другие математики. Вот неполный перечень упущенных им приоритетов.
- Неевклидова геометрия, где он опередил Лобачевского и Бойяи, но не решился опубликовать свои результаты[24].
- Эллиптические функции, где он также далеко продвинулся, но не успел ничего напечатать, а после работ Якоби и Абеля надобность в публикации отпала.
- Содержательный набросок теории кватернионов, 20 лет спустя независимо открытых Гамильтоном.
- Метод наименьших квадратов, переоткрытый позднее Лежандром.
- Закон распределения простых чисел, с которым его также опередила публикация Лежандра.
Несколько студентов, учеников Гаусса, стали выдающимися математиками, например: Риман, Дедекинд, Бессель, Мёбиус.
Алгебра
Гаусс дал первые строгие, даже по современным критериям, доказательства основной теоремы алгебры.
Он открыл кольцо целых комплексных гауссовых чисел, создал для них теорию делимости и с их помощью решил немало алгебраических проблем. Указал знакомую теперь всем геометрическую модель комплексных чисел и действий с ними.
Гаусс дал классическую теорию сравнений, открыл конечное поле вычетов по простому модулю, глубоко проник в свойства вычетов.
Геометрия
Гаусс впервые начал изучать внутреннюю геометрию поверхностей. Он открыл характеристику поверхности (гауссову кривизну), которая не изменяется при изгибаниях, тем самым заложив основы римановой геометрии. В 1827 году опубликовал полную теорию поверхностей. Доказал Theorema Egregium — основную теорему теории поверхностей. Труды Гаусса по дифференциальной геометрии дали мощный толчок развитию этой науки на весь XIX век. Попутно он создал новую науку — высшую геодезию.
Гаусс первым (по некоторым данным[11], примерно в 1818 году) построил основы неевклидовой геометрии и поверил в её возможную реальность[25]. Однако за всю свою жизнь он ничего не опубликовал на эту тему, вероятно, опасаясь быть непонятым из-за того, что развиваемые им идеи шли вразрез с догматом евклидовости пространства в доминирующей в то время кантовской философией)[26]. Тем не менее, сохранилось письмо Гаусса к Лобачевскому, в котором ясно выражено его чувство солидарности, а в личных письмах, опубликованных после его смерти, Гаусс восхищается работами Лобачевского. В 1817 году он писал астроному В. Ольберсу[27]:
Я прихожу всё более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка. Может быть, в другой жизни мы придём к взглядам на природу пространства, которые нам теперь недоступны. До сих пор геометрию приходится ставить не в один ранг с арифметикой, существующей чисто a priori, а скорее с механикой.
В его бумагах обнаружены содержательные заметки по тому предмету, что позже назвали топологией. Причём он предсказал фундаментальное значение этого предмета.
Древняя проблема построения правильных многоугольников с помощью циркуля и линейки была решена Гауссом окончательно (см. теорему Гаусса — Ванцеля).
Математический анализ
Гаусс продвинул теорию специальных функций, рядов, численные методы, решение задач математической физики. Создал математическую теорию потенциала.
Много и успешно занимался эллиптическими функциями, хотя почему-то ничего не публиковал на эту тему.
Аналитическая механика
Главным вкладом Гаусса в аналитическую механику стал его принцип наименьшего принуждения. Для аналитического оформления данного принципа большое значение имела[28] работа Г. Шеффлера (1820—1903) «О Гауссовом основном законе механики»[29], опубликованная в 1858 г. В ней Шеффлер переопределил[30] принуждение (нем. Zwang) как следующее (в современных обозначениях[31]) выражение: Z\;=\;{\frac {1}{2}}\;{\overset {}{\overset {N}{\underset {i=1}{\sum }}}}\,m_{i}\left(\mathbf {w} _{i}-{\frac {\mathbf {F} _{i}}{m_{i}}}\right)^{2}} ,
гдеNdisplaystyle N} — число точек, входящих в системуmidisplaystyle m_{i}} — массаidisplaystyle i} -й точкиFidisplaystyle \mathbf {F} _{i}} — равнодействующая приложенных к ней активных силwidisplaystyle \mathbf {w} _{i}} — допустимое ускорение данной точки (в действительности Шеффлер пользовался скалярной формой записи, причём множитель перед знаком суммы у него отсутствовал). Под «допустимыми ускорениями» здесь понимаются[32] такие ускорения точек системы, которые в данном её состоянии можно реализовать, не нарушая связей; действительные ускорения (возникающие под действием реально приложенных к точкам системы сил) представляют собой частный случай допустимых ускорений.
После этого принцип Гаусса обрёл ту форму, которая используется при его изложении и в современных курсах теоретической механики: «При действительном движении механической системы с идеальными связями принуждениеZdisplaystyle Z} принимает значение, наименьшее из всех возможных значений при движениях, совместимых с наложенными связями»[33]. Данный принцип относится[34] к числу дифференциальных вариационных принципов механики. Он обладает весьма большой общностью, так как применим к самым различным механическим системам: к консервативным и неконсервативным, к голономным и неголономным. Поэтому, в частности, он часто используется[35] в качестве исходного пункта при выводе уравнений движения неголономных систем.
Астрономия
В астрономии Гаусс, в первую очередь, интересовался небесной механикой, изучал орбиты малых планет и их возмущения. Он предложил теорию учёта возмущений и неоднократно доказывал на практике её эффективность.
В 1809 году Гаусс нашёл способ определения элементов орбиты по трём полным наблюдениям (если для трёх измерений известны время, прямое восхождение и склонение).
Другие достижения
Для минимизации влияния ошибок измерения Гаусс использовал свой метод наименьших квадратов, который сейчас повсеместно применяется в статистике. Хотя Гаусс не первый открыл распространённый в природе нормальный закон распределения, но он настолько тщательно его исследовал, что график распределения с тех пор часто называют гауссианой.
В физике Гаусс развил теорию капиллярности, теорию системы линз. Заложил основы математической теории электромагнетизма и при этом первым ввёл понятие потенциала электрического поля, а в 1845 г. пришёл к мысли о конечной скорости распространения электромагнитных взаимодействий. В 1832 г. создал абсолютную систему мер, введя три основные единицы: единицу длины — 1 мм, единицу времени — 1 с, единицу массы — 1 мг; эта система послужила прообразом системы единиц СГС. Совместно с Вебером Гаусс построил первый в Германии электромагнитный телеграф. Изучая земной магнетизм, Гаусс изобрёл в 1837 г. униполярный магнитометр, в 1838 г. — бифилярный[21].
Увековечение памяти
В честь Гаусса названы:
- кратер на Луне;
- астероид № 1001 (Gaussia);
- Гаусс — единица измерения магнитной индукции в системе СГС; сама эта система единиц часто именуется гауссовой;
- одна из фундаментальных астрономических постоянных — постоянная Гаусса;
- награда за выдающиеся достижения в прикладной математике, присуждаемая раз в 4 года на Международном конгрессе математиков;
- вулкан Гауссберг в Антарктиде;
- его портрет и изобретённый им измерительный инструмент[36] «гелиотроп» изображены на вышедшей из оборота, но предоставляющей интерес для бонистов банкноте в 10 марок.
С именем Гаусса связано множество теорем и научных терминов в математике, астрономии и физике, см. Список объектов, названных в честь Гаусса. Некоторые из них:
- Алгоритм Гаусса вычисления даты Пасхи
- Гауссова кривизна
- Гауссовы целые числа
- Гипергеометрическая функция Гаусса
- Интерполяционная формула Гаусса
- Квадратурная формула Гаусса — Лагерра
- Метод Гаусса для решения систем линейных уравнений.
- Метод Гаусса — Жордана
- Методы Гаусса — Зейделя
- Метод Гаусса (численное интегрирование)
- Нормальное распределение, или распределение Гаусса
- Отображение Гаусса
- Признак Гаусса
- Проекция Гаусса — Крюгера
- Прямая Гаусса
- Пушка Гаусса
- Ряд Гаусса
- Система единиц Гаусса для измерения электромагнитных величин.
- Теорема Гаусса — Ванцеля о построении правильных многоугольников и числах Ферма.
- Теорема Гаусса — Остроградского в векторном анализе.
- Теорема Гаусса — Лукаса о корнях комплексного многочлена.
- Формула Гаусса — Бонне о гауссовой кривизне.
- Гаусс на почтовых марках
- Почтовая марка ФРГ (1955), 10 пфеннигов, (Михель 204li>
- Почтовая марка ФРГ, 1977 год, 40 пфеннигов (Михель 928li>
В литературе и кино
Жизни Гаусса и Александра фон Гумбольдта посвящён фильм «Измеряя мир» («Die Vermessung der Welt», 2012, Германия). Фильм снят по одноимённому роману писателя Даниэля Кельмана[37].
Переводы трудов на русский язык
- Гаусс К. Ф. Избранные геодезические сочинения. Т. 1. — М.: Геодезиздат, 1957.
- Гаусс К. Ф. Исследования по оптике. — НИЦ «Регулярная и хаотическая динамика», 2011. — ISBN 978-5-93972-871-3.
- Гаусс К. Ф. Общие исследования о кривых поверхностях // Основания геометрии (сб.). — М.: ГИТТЛ, 1956.
- Гаусс К. Ф. Отрывки из писем и черновиков, относящиеся к неевклидовой геометрии. // Основания геометрии (сб.). — М.: ГИТТЛ, 1956.
- Гаусс К. Ф. Пояснение возможности построения семнадцатиугольника // Историко-математические исследования. — М.: Наука, 1976. — № 21. — С. 285—291.
- Гаусс К. Ф. Труды по теории чисел. Перевод Б. Б. Демьянова, общая редакция И. М. Виноградова, комментарии Б. Н. Делоне. — М.: Изд-во АН СССР, 1959.
Примечания
↑ 1 2 Bibliothèque nationale de France идентификатор BNF (фр.): платформа открытых данных — 2011. ↑ 1 2 3 4 verschiedene Autoren Allgemeine Deutsche Biographie (нем.) / Hrsg.: Historische Commission bei der königl. Akademie der Wissenschaften — Duncker Humblot, 1875. ↑ 1 2 Архив по истории математики Мактьютор ↑ 1 2 Гаусс Карл Фридрих // Большая советская энциклопедия: [в 30 т.] / под ред. А. М. Прохорова — 3-е изд. — М.: Советская энциклопедия, 1971. — Т. 6 : Газлифт — Гоголево. — С. 144—145. ↑ Туринская академия наук — 1757. ↑ http://www.tandfonline.com/doi/full/10.1080/00207160.2012.689826 ↑ http://www.maa.org/publications/maa-reviews/50th-imo-50-years-of-international-mathematical-olympiads ↑ http://link.springer.com/content/pdf/10.1007/978-3-642-14565-0_3.pdf ↑ 1 2 3 Математическая генеалогия (англ.) — 1997. ↑ Математическая генеалогия (англ.) — 1997. ↑ 1 2 3 4 5 Боголюбов, 1983, с. 121—123. ↑ Гиндикин С. Г. Рассказы о физиках и математиках. — М.: МЦНМО, 2001. Глава «Король математиков». ↑ Gauss; Karl Friedrich (1777 - 1855) // Сайт Лондонского королевского общества (англ.) ↑ Les membres du passé dont le nom commence par G (фр.) ↑ Гаусс, Карл Фридрих на официальном сайте РАН ↑ Mind Over Mathematics: How Gauss Determined The Date of His Birth ↑ Brian Hayes. Gauss's Day of Reckoning. American Scientist (2006). doi:10.1511/2006.59.200. Дата обращения: 15 октября 2019. ↑ Боголюбов, 1983, с. 219. ↑ Тюлина, 1979, с. 178. ↑ Гаусс К. Об одном новом общем принципе механики (Über ein neues allgemeines Grundgesetz der Mechanik) / Journal für Reine und Angewandte Mathematik. 1829. Bd. IV. — S. 232—235.) // Вариационные принципы механики: Сб. статей / Под ред. Л. С. Полака. — М.: Физматгиз, 1959. — 932 с. — С. 170—172. ↑ 1 2 3 Храмов, 1983, с. 76. ↑ Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. Т. 1. — М.: Наука, 1978. — С. 52. ↑ Дербишир Дж. Простая одержимость. Бернхард Риман и величайшая нерешённая проблема в математике. — М.: Астрель, 2010. — ISBN 978-5-271-25422-2. — С. 76—77. ↑ Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. М.: Гостехиздат, 1956, С.119—120. ↑ Гаусс К. Ф. Отрывки из писем и черновиков, относящиеся к неевклидовой геометрии // Основания геометрии. — М.: ГИТТЛ, 1956. ↑ Обычно говорят, что он боялся быть непонятым. Действительно, в одном письме, где затрагивается вопрос о пятом постулате и неевклидовой геометрии, Гаусс пишет: «бойтесь крика беотийцев» Возможно, однако, другое объяснение молчания Гаусса: он один из немногих понимал, что, как бы много интересных теорем неевклидовой геометрии ни было выведено, это ещё ничего не доказывает — всегда теоретически остается возможность, что в качестве дальнейших следствий будет получено противоречивое утверждение. А может быть, Гаусс понимал (или чувствовал), что в то время (первая половина XIX в.) ещё не найдены математические понятия, позволяющие точно поставить и решить этот вопрос. // Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, гл. XII, пар. 2, — Физматлит, Москва, 2009. ↑ Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. — М.: Гостехиздат, 1956. — С. 103. ↑ Моисеев, 1961, с. 334. ↑ Göttinger Digitalisierungszentrum: Seitenansicht ↑ Тюлина, 1979, с. 179—180. ↑ Маркеев, 1990, с. 90. ↑ Голубев, 2000, с. 417. ↑ Дронг В. И., Дубинин В. В., Ильин М. М. и др. Курс теоретической механики / Под ред. К. С. Колесникова. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2011. — 758 с. — ISBN 978-5-7038-3490-9. — С. 526. ↑ Маркеев, 1990, с. 89. ↑ Голубев, 2000, с. 427. ↑ Гелиотроп Гаусса ↑ Измеряя мир (недоступная ссылка). Дата обращения: 27 июня 2013. Архивировано 8 января 2014 года.Литература
- Белл Э. Т. Творцы математики. — М.: Просвещение, 1979. — 256 с.
- Боголюбов А. Н. Математики. Механики. Биографический справочник. — Киев: Наукова думка, 1983. — 639 с.
- Бюлер В. Гаусс. Биографическое исследование. — М.: Наука, 1989. — 208 с. — ISBN 5-02-013919-X.
- Гаусс К. Ф.: Сб. статей под ред. И. М. Виноградова (к 100-летию со дня смерти). — М.: АН СССР, 1956. — 312 с.
- Гиндикин С. Г. Рассказы о физиках и математиках. 3-е изд. — М.: МЦНМО, 2001. — ISBN 5-900916-83-9.
- Голубев Ю. Ф. Основы теоретической механики. — М.: Изд-во Моск. ун-та, 2000. — 719 с. — ISBN 5-211-04244-1.
- Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. Т. 1. Математическая логика. Алгебра. Теория чисел. Теория вероятностей. — М.: Наука, 1978.
- Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. Т. 2. Геометрия. Теория аналитических функций. — М.: Наука, 1981.
- Колчинский И. Г., Корсунь А. А., Родригес М. Г. Астрономы: Биографический справочник. — 2-е изд., перераб. и доп. — Киев: Наукова думка, 1986. — 512 с.
- Маркеев А. П. Теоретическая механика. — М.: Наука, 1990. — 416 с. — ISBN 5-02-014016-3.
- Моисеев Н. Д. Очерки истории развития механики. — М.: Изд-во Моск. ун-та, 1961. — 478 с.
- Тюлина И. А. История и методология механики. — М.: Изд-во Моск. ун-та, 1979. — 282 с.
- Храмов Ю. А. Гаусс Карл Фридрих (Gauss Karl) // Физики : Биографический справочник / Под ред. А. И. Ахиезера. — Изд. 2-е, испр. и доп. — М. : Наука, 1983. — С. 76. — 400 с. — 200 000 экз.
Ссылки
.mw-parser-output .ts-Родственные_проекты{width:19em;box-sizing:border-box;margin:0 0 .5em 1em;padding:.4em;background:#f8f9fa;border:1px solid #a2a9b1;font-size:90%}.mw-parser-output .ts-Родственные_проекты-header{margin-bottom:.2em;padding:.2em .6em;font-size:110%}.mw-parser-output .ts-Родственные_проекты-item{display:flex;padding:.2em .6em}.mw-parser-output .ts-Родственные_проекты-image{min-width:24px;display:inline-block;margin-right:.4em;flex:none;vertical-align:top;text-align:center}.mw-parser-output .ts-Родственные_проекты-image img{vertical-align:middle}.mw-parser-output .ts-Родственные_проекты-label{align-self:center}@media(max-width:719px){.mw-parser-output .ts-Родственные_проекты{width:auto;margin-left:0;margin-right:0}}- Джон Дж. О’Коннор и Эдмунд Ф. Робертсон. Гаусс, Карл Фридрих (англ.) — биография в архиве MacTutor.
- Complete works
- TCDb
- Математическая генеалогия
- zbMATH Open
- Архив по истории математики Мактьютор
- Проект «Гутенберг»
- RKDartists
- Большая каталанская
- Большая норвежская
- Большая российская
- Брокгауза и Ефрона
- Литовская универсальная
- Малый Брокгауза и Ефрона
- Allgemeine Deutsche Biographie
- Britannica (11-th)
- Britannica (онлайн)
- Brockhaus
- Notable Names Database
- Universalis
- Find a Grave
- WikiTree
- BAV: ADV12590263, ADV10063780
- BIBSYS: 90061367
- BNC: a10857801
- BNE: XX1059229
- BNF: 11904373v
- CiNii: DA00502483
- CONOR: 6690403
- GND: 104234644
- ISNI: 0000 0001 2125 7962
- LCCN: n79038533
- LNB: 000096135
- NDL: 00440637
- NKC: jn19990002581
- NLA: 36346691
- NLG: 139208
- NLP: A12546604
- NSK: 000286491
- NTA: 070492824
- NUKAT: n96300409
- PTBNP: 512934
- LIBRIS: 42gjjlkn3jvj7jk
- SUDOC: 027475115
- VIAF: 29534259
- WorldCat VIAF: 29534259
- РНБ: 7782375, 77101574
- Пьяцци (1803)
- Матьё (1807)
- Гаусс (1810)
- Бессель (1810)
- Понд (1817)
- Понс (1818)
- Гершель (1825)
- Эйри (1834)
- Фай (1844)
- Темпель (1861)
- де ла Рю (1866)
- Скиапарелли (1868)
- Хаггинс (1870)
- Менье (1878)
- Свифт (1882)
- Бигурдан (1883)
- Баклунд (1886)
- Бигурдан (1891)
- Барнард (1892)
- Бёрнхем (1904)
- Пикеринг (1906)
- Босс (1911)
- Белопольский (1918)
- Расселл (1922)
- Стойко (1930)
кто такой гаусс
Немецкий математик из числа великих, не уступающий по рангу Ньютону или Архимеду. Родился в Брауншвейге (Braunschweig), в семье крестьян. Гениальные способности в математике проявил уже в раннем детстве, и пораженный его удивительным талантом учитель начальной школы убедил родителей Карла не определять мальчика в ремесленное училище, а дать ему возможность продолжить образование. В возрасте четырнадцати лет Гаусс буквально потряс своими обширными познаниями графа Брауншвейгского, и тот выделил юноше именную стипендию. Большинство своих важнейших математических открытий Гаусс сделал еще до присвоения ему ученой степени доктора наук Гёттингенским университетом в 1799 году, а спустя два года он опубликовал свой самый фундаментальный труд «Трактат о математике» (Disquisitiones Mathematicae), который посвятил своему влиятельному покровителю.
Речь в трактате шла о теории чисел — разделе математики, занимающемся, в частности, натуральными числами и соотношениями между ними, такими как Великая теорема Ферма. Занятий математикой Гаусс не оставлял и впоследствии, сформулировав ряд принципов теории вероятностей и математической статистики, включая распределение случайных величин вокруг среднего значения, получившее название распределения Гаусса.
В 1801 году, после открытия первого астероида Цереры, Гаусс обратился к астрономии. Для расчета параметров его орбиты он разработал метод наименьших квадратов, позволяющий полностью рассчитать орбиту астероида по результатам всего трех измерений его положения на околосолнечной орбите. Пять лет спустя ученый был назначен директором Гёттингенской обсерватории и оставался на этом посту до конца жизни. Кроме того, Гаусс первым всерьез занялся изучением земного магнетизма, и не случайно единица напряженности магнитного поля названа гауссом в его честь.
Карл Фридрих Гаусс Биографии / Знаменитые тезки / Имена / Фамилии / Отчества / Имя-отчество / Гороскопы / Тесты / События / Главная
«Математический век» Карла Гаусса — менее десяти лет. При этом большую часть времени заняли работы, оставшиеся неизвестными современникам (эллиптические функции). Гаусс считал, что может не торопиться с публикацией своих результатов, тридцать лет так и было. Но в 1827 году сразу два молодых математика — Абель и Якоби — опубликовали многое из того, что было им получено.
О работах Гаусса по неевклидовой геометрии узнали лишь при публикации посмертного архива. Так Гаусс обеспечил себе возможность спокойно работать отказом обнародовать свое великое открытие, вызвав несмолкающие по сей день споры о допустимости занятой им позиции.
С наступлением нового века научные интересы Гаусса решительно сместились в сторону от чистой математики. Он много раз эпизодически будет обращаться к ней, и каждый раз получать результаты, достойные гения. В 1812 году он опубликовал работу о гипергеометрической функции. Широко известна заслуга Гаусса в геометрической интерпретации комплексных чисел.
Новым увлечением Гаусса стала астрономия. Одной из причин, по которой он занялся новой наукой, была прозаическая. Гаусс занимал скромное положение приват-доцента в Брауншвейге, получая 6 талеров в месяц. Пенсия в 400 талеров от герцога-покровителя не настолько улучшила его положение, чтобы он мог содержать семью, а он подумывал о женитьбе. Получить где-нибудь кафедру по математике было не просто, да Гаусс и не очень стремился к активной преподавательской деятельности. Расширяющаяся сеть обсерваторий делала карьеру астронома более доступной.
Гаусс начал интересоваться астрономией еще в Геттингене. Кое-какие наблюдения он проводил в Брауншвейге, причем часть герцогской пенсии он израсходовал на покупку секстанта. Он ищет достойную вычислительную задачу. Ученый вычисляет траекторию предполагаемой новой большой планеты. Немецкий астроном Ольберс, опираясь на вычисления Гаусса, нашел планету (ее назвали Церерой). Это была подлинная сенсация!
25 марта 1802 году Ольберс открывает еще одну планету — Палладу. Карл Гаусс быстро вычисляет ее орбиту, показав, что и она располагается между Марсом и Юпитером. Действенность вычислительных методов Гаусса стала для астрономов несомненной.
К Гауссу приходит признание. Одним из признаков этого было избрание его членом-корреспондентом Петербургской академии наук. Вскоре его пригласили занять место директора Петербургской обсерватории. В то же время Ольберс предпринимает усилия, чтобы сохранить Гаусса для Германии. Еще в 1802 году он предлагает куратору Геттингенского университета пригласить Гаусса на пост директора вновь организованной обсерватории. Ольберс пишет при этом, что Гаусс «к кафедре математики имеет положительное отвращение». Согласие было дано, но переезд состоялся лишь в конце 1807 году. За это время Гаусс женился. «Жизнь представляется мне весной со всегда новыми яркими цветами», — восклицает он. В 1806 году умирает от ран герцог, к которому Гаусс, по-видимому, был искренне привязан. Теперь ничто не удерживает его в Брауншвейге.
Жизнь Гаусса в Геттингене складывалась несладко. В 1809 году после рождения сына умерла жена, а затем и сам ребенок. Вдобавок Наполеон обложил Геттинген тяжелой контрибуцией. Сам Гаусс должен был заплатить непосильный налог в 2000 франков. За него попытались внести деньги Ольберс и, прямо в Париже, Пьер Симон Лаплас. Оба раза Гаусс гордо отказался. Однако нашелся еще один благодетель, на этот раз — аноним, и деньги возвращать было некому. Только много позднее узнали, что это был курфюрст Майнцский, друг Гете. «Смерть мне милее такой жизни», — пишет Гаусс между заметками по теории эллиптических функций. Окружающие не ценили его работ, считали его, по меньшей мере, чудаком. Ольберс успокаивает Гаусса, говоря, что не следует рассчитывать на понимание людей: «их нужно жалеть и им служить».
В 1809 году выходит знаменитая «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Карл Гаусс излагает свои методы вычисления орбит. Чтобы убедиться в силе своего метода, он повторяет вычисление орбиты кометы 1769 года, которую в свое время за три дня напряженного счета вычислил Эйлер. Гауссу на это потребовался час. В книге был изложен метод наименьших квадратов, остающийся по сей день одним из самых распространенных методов обработки результатов наблюдений.
На 1810 год пришлось большое число почестей: Гаусс получил премию Парижской академии наук и золотую медаль Лондонского королевского общества, был избран в несколько академий.
Регулярные занятия астрономией продолжались почти до самой смерти. Знаменитую комету 1812 года (которая «предвещала» пожар Москвы!) всюду наблюдали, пользуясь вычислениями Гаусса. 28 августа 1851 года Гаусс наблюдал солнечное затмение. У Гаусса было много учеников-астрономов: Шумахер, Герлинг, Николаи, Струве. Крупнейшие немецкие геометры Август Мёбиус и Штаудт учились у него не геометрии, а астрономии. Он состоял в активной переписке со многими астрономами регулярно.
К 1820 году центр практических интересов Гаусса переместился в геодезию. Геодезии мы обязаны тем, что на сравнительно короткое время математика вновь стала одним из главных дел Гаусса. В 1816 году он думает об обобщении основной задачи картографии — задачи об отображении одной поверхности на другую «так, чтобы отображение было подобно отображаемому в мельчайших деталях»
В 1828 году вышел в свет основной геометрический мемуар Гаусса «Общие исследования о кривых поверхностях». Мемуар посвящен внутренней геометрии поверхности, т. е. тому, что связано со структурой самой этой поверхности, а не с ее положением в пространстве. Оказывается, «не покидая поверхности», можно узнать, кривая она или нет. «Настоящую» кривую поверхность ни при каком изгибании нельзя развернуть на плоскость. Карл Гаусс предложил числовую характеристику меры искривления поверхности.
К концу двадцатых годов Гаусс, перешедший пятидесятилетний рубеж, начинает поиски новых для себя областей научной деятельности. Об этом свидетельствуют две публикации 1829 и 1830 годов. Первая из них несет печать размышлений об общих принципах механики (здесь строится «принцип наименьшего принуждения» Гаусса); другая посвящена изучению капиллярных явлений. Гаусс решает заниматься физикой, но его узкие интересы еще не определились.
В 1831 году он пытается заниматься кристаллографией. Это очень трудный год в жизни Гаусса - умирает его вторая жена, у него начинается тяжелейшая бессонница. В этом же году в Геттинген приезжает приглашенный по инициативе Гаусса 27-летний физик Вильгельм Вебер. Гаусс познакомился с ним в 1828 году в доме Гумбольдта. Гауссу было 54 года, о его замкнутости ходили легенды, и все же в Вебере он нашел сотоварища по занятиям наукой, какого он никогда не имел прежде.
Интересы Гаусса и Вебера лежали в области электродинамики и земного магнетизма. Их деятельность имела не только теоретические, но и практические результаты. В 1833 году они изобретают электромагнитный телеграф. Первый телеграф связывал магнитную обсерваторию с городом Нейбургом.
Изучение земного магнетизма опиралось как на наблюдения в магнитной обсерватории, созданной в Геттингене, так и на материалы, которые собирались в разных странах «Союзом для наблюдения над земным магнетизмом», созданным Гумбольдтом после возвращения из Южной Америки. В это же время Карл Гаусс создает одну из важнейших глав математической физики — теорию потенциала.
Совместные занятия Гаусса и Вебера были прерваны в 1843 году, когда Вебера вместе с шестью другими профессорами изгнали из Геттингена за подписание письма королю, в котором указывались нарушения последним конституции (Гаусс не подписал письма) Возвратился в Геттинген Вебер лишь в 1849 году, когда Гауссу было уже 72 года. (Самин Д. К. 100 великих ученых. - М.: Вече).
Карл Гаусс умер 23 февраля 1855 года в Геттингене, Ганноверское королевство, ныне Германия. Похоронен на кладбище Святого Альбана.
--> Он родился 30 апреля 1777 года в Брауншвейге (север Германии); родители мальчика принадлежали к рабочему сословию.Уже в три года Иоганн мог так хорошо читать и считать, что сумел заметить ошибку в вычислениях отца (тот как-то подсчитывал жалованье рабочих-каменщиков, делая пометки на листе бумаги).
Бытует еще одна история о детстве Гаусса. Его мать не запомнила точной даты, когда он появился на свет – но говорила, что это случилось в среду, за 8 дней до Пасхи. Зная это, мальчик смог сам вычислить день своего рождения.
Ему предписывают выражение: «Математика – королева наук, а арифметика – королева математики».
В 1791 году на юношу, который делал недюжинные успехи в учебе, обратил внимание граф Брауншвейга – и взял на себя расходы по его обучению в школе, а впоследствии – и в университете Гёттингена (1795–1798).
Уже в 1792 молодой математик открыл, что правильный семнадцатиугольник (кольцеобразную фигуру с 17 гранями) можно построить, используя только циркуль и линейку.
Примерно тогда же Гаусс описал принцип распределения простых чисел (то есть тех, которые не делятся ни на что, кроме 1 и самого себя) и доказал Квадратичный закон взаимности.
В 1799 году Гаусс направил диссертацию в Хельмштедтский университет – свое доказательство основной теоремы алгебры. За эту бумагу он заочно получил докторскую степень.
В 1801 в Лейпциге из печати вышли его «Арифметические исследования» – первая крупная работа. На 600 страниц с лишним Гаусс изложил все открытия своих предшественников-арифметиков и описал свои исследования. Три года спустя знаменитый физик Жозеф Луи Лагранж написал молодому ученому: «Ваши «Исследования» сразу же возвысили Вас до уровня первых математиков, и я считаю, что последняя часть содержит самое красивое аналитическое открытие среди сделанных на протяжении длительного времени».
В том же году он стал членом-корреспондентом российской Академии наук.
К ноябрю 1801 Гаусс рассчитал орбиту карликовой планеты Цереры, которая была открыта в начале того же года итальянцем Джузеппе Пиацци.